
A POX OpenFlow Loop Solution for

 Mininet Network Emulations

Silvan Streit

Radiocommunications Laboratory, Physics Department,

 Aristotle University of Thessaloniki,

Thessaloniki, 54124,

Greece

sstreit@physics.auth.gr

Christos Kalialakis

Radiocommunications Laboratory, Physics Department,

Aristotle University of Thessaloniki,

Thessaloniki 54124,

Greece

kalialakis@ieee.org

Abstract—Mininet is an open source platform for network

emulation. Several network architectures can be implemented

and tested in conjunction with an OpenFlow controller. In this

work, a solution to the network loop problem is presented by

writing in Python a custom component for the POX OpenFlow

controller platform. The Google WAN network is used as a test

network structure to highlight the proposed implementation. The

algorithm proposed is generic and can be used in other

OpenFlow controllers which use different Application

Programming Interfaces.

Keywords—Mininet; SDN; Python; OpenFlow; Google;

Network Loops

I. INTRODUCTION

The major trends in telecommunications networking[1]
are, on the one side the increasing degree of dependence on
software, a process recently termed softwarization [2] and the
vast complexity. Software Defined Networking (SDN) in
particular appears as an approach that goes along this roadmap
[3]-[4].

On the complexity side, tools that allow network emulation
and test before implementation are highly desirable. On the
software side, ease of experimentation with controller
structures that can help reduce hardware dependencies is
highly sought. Mininet [5] has surfaced as a popular approach
to achieve both goals especially when combined with
OpenFlow [6]. Several controllers are available such as POX,
NOX, Floodlight and others. For this study, POX was used
because it has a Python language interface and is used widely
for research [6]. OpenFlow in general has attracted substantial
interest from industry [7]-[8].

In this work, the focus is on the network loop problem.
Algorithms such as the Spanning Tree Protocol and Shortest
Path Bridging are used in commercial switches to provide a
logical loop free operation in networks with physical loops. In
this work, a simple software solution is demonstrated. After
providing some background on Mininet in Section II, the
Google WAN [9] is used as the network structure (Section III)
to discuss the solution to this problem (Section IV). The

solution is implemented by writing a custom component for
the POX controller platform using the scientific computing
language Python.

II. MININET BACKGROUND

A. Mininet

Mininet is an open source network emulator that runs on a
Linux virtual machine. It can be combined with other software
components such as a remote OpenFlow controller. Traffic
analysis can be performed with packet sniffers such as the
open source Wireshark [10]. There are three planes in the
SDN architecture [11]; data, control and application (Fig.1). In
this paper, the interest is in the bottom two planes.

APPLICATION

CONTROL

DATA

NORTHBOUND INTERFACE

SOUTHBOUND INTERFACE

Applications

Mininet

Fig. 1. Mininet and POX OpenFlow in SDN architecture.

B. Network Components

In terms of fundamental components a network can be
described as a collection of hosts, switches and controllers
connected by links. Simple topologies [12] can be used as test
structures for customized functions of OpenFlow controllers.
For example, a linear network and a single switch network are
shown in Fig.2 and Fig.3 respectively. Larger networks with
every possible topology can be created by defining all
components and their connections utilizing the high level
Python Application Program Interface (API).

mailto:sstreit@physics.auth.gr
mailto:kalialakis@ieee.org
Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Fig. 2. A Linear Network with two hosts and a controller

Fig. 3. A Single Switch Network with three hosts

III. THE LOOP PROBLEM: GOOGLE WAN AS CASE STUDY

As a test structure in this work, the Google OpenFlow
WAN[9] is used. This network comprises of 12 nodes as
shown in Fig.4. These nodes where simulated as OpenFlow
switches with two hosts connected to each of them (File
google-topo.py). Path loops are also depicted in Fig.4.

Fig. 4. Google WAN Network (adapted from [9]).

If a controller is used in a straightforward fashion (Fig.5)

using a typical hub like or learning switch behavior, packets

will be caught in the loops. Those packets will be forwarded

indefinitely, causing the network eventually to a denial of

service. Therefore a new adjusted controller has to be

employed which is aware of the loops and prevents packets

from being trapped.

Fig. 5. Google WAN network using an OpenFlow controller with paths from

the controller to each host (adapted from [9]) .

IV. A LOOP SOLUTION

A solution to the problem described in the previous section
requires a new custom component for the POX controller
platform. The algorithm for the new component operation is
shown in Fig.6.

Fig. 6. Flow chart of the controller operation algorithm.

The flow chart (Fig. 6) is general enough and could be
readily transferred to other OpenFlow controllers. In the case
of POX in this work, it was realised in Python (file custom-
pox.py).

The controller is fed with the topology of the network and
all associated components; practically a list of all switches and
of all hosts but with the addition of direct links and the
involved ports of the devices on each end of the link.

 In the initialization phase, the controller is instructed to
map the network paths. In order to achieve this, a recursive

s1h1 s2 h2

controller

1 12 2

h1 h3

controller

s11

2

h2

3

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

graph search is conducted by searching for paths between all
hosts. A list of visited nodes is recorded to prevent loops and
multiple visits. Every time a new host is visited, a new
connection is created with the new host at the end and all open
connections from the hosts visited so far are copied to the final
list of connections, connected with the new host. Every time a
new switch is visited, a recursive search of its connections is
triggered which returns a list of all connections to be reached
via this switch. Again all the new connections which are
returned are appended to the final list of connections
connected to the open connections found so far. Recall that the
involved ports of all the devices in the connections are also
recorded in the list of connections. This allows the
transformation of the connections to flow control entries
which can be pushed to the switches.

After all connections are found the list of flows is created.
Effectively, each switch searches for itself in each connection
and locates its port mappings corresponding to the reachable
hosts. These port mappings are then saved as flow entries in
the switch object inside the controller. Once the switches
connect to the controller, the flow entries are pushed to the
switches which allow proper package handling without further
need of controller involvement.

It should be noted that only packets to known hosts can be
forwarded over the network. In this way, only paths which the
controller knows are taken. On one hand, this approach allows
the proper handling of loops but on the other hand no new
hosts can be addressed which the controller is not aware of.
Recall that hosts inside a local network are directly addressed
by their Medium Access Control (MAC) address and the
Address Resolution Protocol (ARP) is always used to resolve
the host’s MAC address given its IP. Normally the host with
the target IP address responds with a broadcast containing its
MAC address. The problem in the loop network is that
broadcasts cannot be forwarded. Therefore, a different way is
needed to answer to an ARP broadcast in this context. Instead
of forwarding the broadcast message and wait for the correct
host to answer, the controller generates the response and
passes it back to the host. The OpenFlow controller POX
allows handling of such low level problems with a high level
API. To this mean, POX offers a module called
arp_responder. Together with a static ARP table of all hosts,
ARPs can now be handled without the need of forwarding the
packages over the network. If a host wants to know the MAC
of another host, an ARP request is sent to the connected
switch. As the destination of the broadcast is unknown, the
switch forwards the ARP request to the central controller. The
arp_responder looks up the corresponding MAC of the other
host and creates an ARP response containing the MAC of the
other host which is passed back to the host through the
connecting switch.

 In order to test the controller and simplify the traffic
analysis, a circle topology (Fig.7) was first implemented in
Mininet to emulate a single loop in the Google WAN (File
circle-topo.py).

Fig. 7. A circle topology implemented in Mininet to address the loop

problem. Switches have been added before each host.

Having tested the solution on the single loop of Fig.7, the
full network topology of Fig. 5 can now be tackled. 276 host-
to-host paths are discovered using the recursive graph. With
the custom loop controller in place, the infinite loops are
dissolved completely (File custom-pox.py).

Please note that all the Python files necessary for the loop
avoidance implementation and testing (circle-topo.py, google-
topo.py, custom-pox.py) are available for download as open
source at the github website in the following URL;
https://github.com/mocast/OpenFlow_Loop_Solution .

V. CONCLUSIONS

A solution implemented in Python has been proposed to
overcome the infinite loop problem by creating a custom
component for the POX controller platform. The solution was
demonstrated on an emulated Google WAN Network. Further
work is needed in order to increase the algorithm efficiency
and to automate arbitrary network topology detection. The
proposed solution is generic enough that can be applied to
other available OpenFlow controllers with different APIs.

ACKNOWLEDGMENT

The first author was supported by the Deutschlandstipendium

and the Erasmus+ mobility grant for study at Aristotle

University of Thessaloniki coming from the Ludwig-

Maximilians-Universität Munich, Germany.

REFERENCES

[1] Shenker, S. “The Future of Networking, and the Past of Protocols”,
Open Networking Summit, 2011

[2] Galis, A. et al. "Softwarization of Future Networks and Services -
Programmable Enabled Networks as Next Generation Software Defined
Networks," 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), pp.1-7, 11-13 Nov. 2013

[3] IEEE Software Defined Networks, online at http://sdn.ieee.org/

[4] An IEEE Think Tank on SDN / NFV (Softwarization), available online
at ieee-sdn.blogspot.com

[5] Mininet, An Instant Virtual Network in your Laptop (or other PC),
online at mininet.org

[6] Rodrigues Prete, L. et al, "Simulation in an SDN network scenario using
the POX Controller," 2014 IEEE COLCOM Conference , pp.1-6, 4-6
June 2014

s1h1 s4 h4

controller

s2

s3

1

1

1

1

2

2

2

2

3 3

h3

h2

3

3

https://github.com/mocast/OpenFlow_Loop_Solution
Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

[7] Levy, S., "Going With the Flow: Google’s Secret Switch to the Next
Wave of Networking", Wired, April 17, 2012.

[8] Neagle, C. "HP takes giant first step into OpenFlow: HP is announcing
its first effort to support OpenFlow standard on its Ethernet switches".
Network World, February 2012.

[9] Hoelzle, U., “Google @ Open Flow WAN”, Open Networking Summit
2012, available online at
http://www.opennetsummit.org/archives/apr12/hoelzletue-openflow.pdf

[10] Wireshark, Stable Release 1.12.3, available online at
https://www.wireshark.org.

[11] Open Networking Foundation, SDN architecture , SDN ARCH 1.0, June
2014.

[12] Kaur, K., Singh, J. and N. Singh Ghumman. "Mininet as Software
Defined Networking Testing Platform", International Conference on
Computing, Communication & Systems, 2014.

http://www.opennetsummit.org/archives/apr12/hoelzletue-openflow.pdf
https://www.wireshark.org/
Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

