
A cloud based signal waveform viewer using modern

browser technologies

Efstathios Lymperidis

Department of informatics

and telecommunications engineering,

University of Western Macedonia,

Kozani, 50100, Greece,

Email: e.l.d@live.com

Minas Dasygenis

 Department of Informatics

and Telecommunications Engineering,

University of Western Macedonia,

Kozani, 50100, Greece,

Email: mdasyg@ieee.org

Abstract—Modern age technologies allow us to create

applications that are always accessible and available to a user.

With the use of such technologies we have achieved the creation

of an application that allows a developer to go through the whole

process of creating an HDL program in a web environment. The

application of the online HDL compiler is a complication of

online tools, which include the cloud based waveform viewer.

This waveform viewer is a tool allowing the user to have a

waveform visualization of a testbench execution with all the

signals and their values throughout the execution duration. It is

designed to run partly on the server and partly on the client

offering a fast, efficient and resource friendly environment. The

use of modern web technologies allows us to create an interactive

display of the waveforms to the user with a lot of features that

provide him with optimal control over it.

Keywords—cloud application; waveform viewer; HDL tool;

modern technologies; waveform visualization;

I. INTRODUCTION

With today’s progress in technology and
telecommunications we experience an age where online tools
come to shine and cloud applications take over their local
counterparts. While local software has to be installed in the
computer with specific operating systems and may need to use
third party libraries, a cloud application is available at all times
and accessible not only from any operating system but a wider
range of computing systems like tablets or even cell phones.

With the use of modern web technologies, that allows us to
create fast and interactive tools in a web environment, we have
developed a tool for an online HDL compiler application which
provides waveform visualization of a testbench execution. The
online HDL compiler is an open source application composed
of several tools that allow the users to go through the whole
process of developing an HDL program while their data are
available to them at any time or place as long as they have
access to a browser.

While the development of the HDL compiler application is
a collective effort of Dr. Minas Dasygenis and his team [1], the
focus of this paper is the signal waveform viewer tool. The
cloud based waveform viewer is an efficient graphical

application where the user is able to dynamically extract all the
relevant information he needs from the signals and their
transitions that interest him. The tool is developed to read and
analyze the output of a testbench execution and create
interactive waveform visualizations for the user. A fixed
demonstration is available for testing at
http://arch.icte.uowm.gr/hdl/vcdview.php while the next step is
the integration of this tool to the online HDL compiler.

The rest of the paper is structured as follows: The next
section (Section II) presents some related work, while Section
III, describes the structure of the signal waveform viewer tool.
In Section IV we present in more details the way the waveform
viewer displays, the signals and in Section V the client features
are presented and explained. Finally, in Section VI we give the
concluding remarks.

II. RELATED WORK

There are a lot of local applications that offer environments
for compiling or simulating HDL code such us the ISE Design
Suite [2], Icarus Verilog [3], VHDL Simili [4] and GHDL [5] .
There also several web applications like the EDA Playground
[6] and Verilog Online [7]. All of them though have the
limitations of focusing on either compiling or simulating
features while local software may require specific operating
systems. The cloud based HDL compiler on the other hand
creates on online environment that provides the user with tools
to go through the whole process of HDL programming on a
web environment.

Perhaps one of the most popular local applications that
provide an interactive waveform viewer is the Modelsim [8]
software. Although a great example for similar tools and even
an inspiration to ours, it is still limited to simulation of a HDL
code and it is still a local commercial application. We on the
other hand are working on creating a complete open source tool
available through the web that covers every need of an HDL
developer.

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

III. STRUCTURE OF THE TOOL

The signal waveform viewer is structured as a number of
steps that include interactions between the client and the server
as well as data analysis and processing, as shown in Figure 1.
As a first step, when the website is loaded, the client sends a
request for the data to the server. On the second step, the server
reads as an input a value change dump (VCD) file, provided by
the online HDL compiler, processes the information and
converts the data in a simple form, easier for the client to
process. The data in this form are then saved to a cache file in
the server so that they can be retrieved if there is no change to
the original VCD file. On the third step the data are sent to the
client where the waves are designed on demand. The final step
provides the user with features that allow him to interact with
the waveform viewer, such as zooming in and out on the time
scale, scrolling through the signals, getting information for
specific time segments about the viewing signals and exporting
their current instance of the waveform viewer as an image.

Fig. 1. The client requests data from the server which analyzes the input

(VCD file) and returns them in an easy to process format.

A. Data Input

In order to understand the techniques used to import the
data, it is essential to understand the input’s format. The input
in our tool is a VCD file generated by the HDL compiler after
running a testbech code to verify the expected output of the
HDL program. The VCD file contains basic information about

the signals like their name, length in bits, signal type and the
modules they belong to, but most importantly it describes the
signals’ value changes during the testbench execution.

The VCD files contain all that data in the following specific
format, an example of which is shown in Figure 2. The header
information contains the time scale, the VCD version and the
generation date. Below that is the signals’ definition containing
the signals separated in their modules where they are defined
by their name, length, type and each of them is assigned to a
specific ASCII character for future reference within the file.
The last part of the VCD file is the value changes section
which gives us the time of a value change and below that the
new value and the signal’s character, this format is repeated for
each time segment where at least one signal changes value.

Fig. 2. On the top part, we see the header information. In the middle part are

some signals declaration and at the bottom part we see some value change

information.

B. Signal Information Analysis

As mentioned in the structure, the server’s first step is to
read the VCD file and analyze the data into a format that is
easy for the client to process. This format is called Javascipt
Object Notation (JSON) and it is generated server-side using
PHP. This allows us to store the VCD data in an easier format
for the client offering overall a fast and resource friendly tool
as the authors in [9] describe. The JSON data are stored in the
server and we can retrieve instead of regenerating them in case
there is no change to the VCD file. Although the JSON file is
considerably bigger than the VCD file, it is optimal to use a
resource such as the server’s storage space instead of the
server’s processing power.

The PHP code uses a function which is called when the
client requests the data through Asynchronous Javascript and
XML (AJAX) [10] to either generate and send them or retrieve

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

them from the JSON file and forward them back to the client.

Using the filemtime() PHP function we can get the time
when the last modification was made to the VCD file and
decide whether the JSON file is outdated and needs to be
generated again.

To generate the JSON data we read the VCD file line by
line. Upon each line there are several conditions using regular
expressions to identify the line’s information. Once we identify
the information, we usually trim the unnecessary parts like the
VCD keywords and keep those that interest us. To store the
signal data an array is used containing the name, length,
module (or module path) and type of each signal as well as the
time segments and the signal’s values on them. Some other
data that we keep are the duration of the execution, the time
scale and the number of time segments. All that data are then

encoded to JSON using the PHP function json_encode(),
stored into the JSON file and returned to the client.

This technique allows us to retrieve all the data we need by
reading the VCD only once and since the JSON file contains
the last version of the data, a lot of the times we will not need
to regenerate it. Overall we end up using minimum resources
but at the same time providing the client side javascript with a
data format which is easy and fast for it to process.

IV. DISPLAYING THE SIGNAL WAVEFORMS

When the page has loaded, the AJAX to retrieve the JSON
data is called. Once the client has the data, we use javascript to
display a list of the signals within their modules and to draw
them on a HTML 5 Canvas element.

A. Initializing the Waveforms Viewer

Once we have the JSON data, we extract from them the
number of time segments in order to draw the selected signals
later on at their full length unless an other zoom value is
specified.

The next thing we have to do is creating the list of signals
available. This is done as shown in Figure 3 by nested “div”
elements for the modules with the signal names inside them as
“span” elements which trigger an event upon been clicked.
This event adds the signal to an array with the signals to be
displayed and calls the function to draw the waveforms.

Fig. 3. The list of signals divided by their modules.

B. Drawing the Selected Signals

When the user clicks on a signal from the list created in the
initialization, an event is called which adds that signal’s

symbol in a global javascript array and then calls the function
to draw the signals on the HTML 5 Canvas element.

First of all, the values of the first and last time segments
that will be displayed are calculated and then, in order to create
two dimensional graphics in a canvas with javascript, we need
to get an object linked the canvas. This object provides us with
the methods and properties required to draw upon the canvas
element. These properties allow us to specify colors, font types
and size, while the methods allow us to draw lines, shapes or
text.

We begin by drawing the name and size (if more than one
bit) of the signal. Then we move a set amount of pixels on the
“X” axis and begin drawing the signal’s waveform. In order to
draw the waveform, we go through the signal’s values until we
reach the time segment where we need to begin displaying.
Since the signal’s data give us information about the change of
value, we can store the value and replace it when a new one
appears. To draw these values we need to start a line from the
last time segment’s coordinates in the canvas to the next. Each
possible value for one bit signals has a certain offset in the “Y”
axis. When the value changes we update this offset and create a
vertical line connecting the end of the last pulse to the next. For
non expanded signals with length more than one bit, instead of
having a different offset to signify their values, we draw their
values as text at the time segments where they change if there
is enough space to display it correctly. Their values are
enclosed by two horizontal lines, one above and one below. On
the time segments where their value changes, we create a
vertical line with a small circle of it to specify that change
visually.

Once we finish drawing the waveforms, we create another
canvas object linked to another canvas element which is not
displayed to the user. This canvas element works as a buffer
and we create a copy of the original canvas on it. This allows
us to add dynamic information on the visible canvas by
replacing it with the buffer’s contents when needed, instead of
redrawing it every time.

Fig. 4. Display of the signals’ waveforms with some additional information.

V. CLIENT FEATURES

There are a number of features that allow the user to
interact dynamically with the signals waveform viewer in order

Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

to gain focused and more detailed information about parts of
the signals that interest them.

A. Time Scaling

The feature to alter the time scale (zoom in and out) is
available to the user through a slider under the canvas. As a
default value the whole duration is shown. The way it is
developed is by using an event listener to the slider which
changes the zoom value and calls the drawing function to
update the canvas. It will keep the current time segment where
the drawing begins and recalculate how many time segments
need to be drawn to the rest of the canvas. The zoom value is
percentage based, pointing to the percentage of the signals that
is shown. So the starting value is one hundred percent (100%)
which is also the maximum value the slider allows while one
percent (1%) is the minimum allowed value.

B. Time Scrolling

The user is allowed by holding the right mouse click down
and dragging left or right in the canvas to scroll through the
signals on the time axis. In order to develop this function we
need to disable the default behavior of the right click inside the
canvas element when the website has loaded. Then using two
event listeners, one for mouse down and one for mouse up, we
can calculate the original position of the mouse and make sure
the mouse button remains clicked. The next step is to add an
other event listener on the canvas for mouse movement which
will trigger when the mouse hovers above the canvas element.
In that case we can calculate the difference between the starting
position of the mouse and the current position and allow the
waveforms to start and end at different time segments
depending on the movement’s direction and speed. Then we
also have to make sure that the scrolling keeps the displayed
signals within their duration and do not allow them to go lower
than zero time and higher than the execution duration.

C. Pointer Information

The pointer information is displayed when the mouse
hovers above the canvas, giving the value of each signal and
the exact time value of that time segment. The user is also able
to assign a more permanent marker by left clicking on the
canvas on the time segment he is interested in. Knowing the
canvas width dimensions, we can easily calculate if the mouse
is within the signals region of the waveform viewer in order to
display the additional information.

To display the information to the user on mouse hover, a
buffer canvas is used. We do this to avoid recreating the canvas
on every event trigger and offer a faster and more efficient
function. Once the buffer is copied to the visible canvas, we
calculate the value for each signal to that time segment and
display it below the signal’s name. That time segment is also
marked with a vertical red line and the exact time value to help
the user understand its position and manipulate it with ease as
shown in Figure 4. The more permanent pointer information
feature uses the same process with the main differences been
that it is displayed on click and it is also copied on the buffer
canvas in order to remain into an extracted image.

Using those features, the user has the ability to extract
detailed information about the signals at any time segment in a
fast and dynamic way.

D. Exporting Image

The last user feature is the ability to export the canvas
content as a JPG image. This will allow the user to keep a local
copy of the waveform with information that interests them,
which they can refer upon at any time. The user is provided
with a button that triggers a function which uses a canvas
object method that returns a link to the image generated by the
canvas.

An important note here is that the canvas we use to
generate the image is the buffer. This way, it is made sure that
the image will contain only the more permanent elements that
are displayed.

VI. CONCLUSION

Mobility and independence of the machine and third party
software are becoming a need in modern days and perhaps
even more so in the near future. The tool presented here is
designed to deal with that need, offering a web environment
accessible by any operating system and even a wide range of
devices. The cloud based signal waveform viewer is also part
of an application that deals with another problem of HDL
programming, the severe lack of software that gives the
developer the ability to go through the whole process of
creating and testing an HDL program. We have seen here that
such applications can not only be developed in a way that
makes them accessible at any time and place but they can also
be designed providing the users with interactive and dynamic
features on match with their local counterparts.

REFERENCES

[1] M. Dasygenis, "A distributed VHDL compiler and simulator accessible

from the web." Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2014 24th International Workshop on. IEEE,
2014.

[2] Xilinx, “ISE Design Suite”, http://www.xilinx.com/products/design-
tools/ise-design-suite.html

[3] S. Williams, “Icarus Verilog,” http://iverilog.icarus.com/

[4] Symphony EDA, “VHDL Simili,”
http://www.symphonyeda.com/products.htm

[5] T. Gingold, A. Lauger, F. Tappero, C. Jarron, “GHDL,”
http://ghdl.free.fr/

[6] Victor EDA, “EDA Playground,” http://www.edaplayground.com/

[7] iVerilog, “Verilog Online”, http://iverilog.com/index.php

[8] Mentor Graphics, “Modelsim,”
http://www.mentor.com/products/fv/modelsim/

[9] Ecma International, "The JSON Data Interchange Format," Standard
ECMA-404, October 2013. [Online]. Available : http://www.ecma-
international.org/publications/standards/Ecma-404.htm

[10] J. J. Garrett, “Ajax: A New Approach to Web Applications,” 2005.
[Online]. Available :
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_a
daptive_path.pdf

http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://iverilog.icarus.com/
http://www.symphonyeda.com/products.htm
http://ghdl.free.fr/
http://www.edaplayground.com/
http://iverilog.com/index.php
http://www.mentor.com/products/fv/modelsim/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

	I. Introduction
	II. RELATED WORK
	III. Structure of the Tool
	A. Data Input
	B. Signal Information Analysis

	IV. Displaying the Signal Waveforms
	A. Initializing the Waveforms Viewer
	B. Drawing the Selected Signals

	V. Client Features
	A. Time Scaling
	B. Time Scrolling
	C. Pointer Information
	D. Exporting Image

	VI. Conclusion
	References

