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Abstract—In  recent  years  considerable  attention  has  been
devoted in the development of  reconfigurable architectures for
different classes of problems. One specific example is the fama
(flexible-adder-multiplier-adder)  cell  which  was  proposed  to
provide  efficient  arithmetic  computation  in  DSP applications.
Although  this  architecture  has  been  shown  to  outperform
alternative  implementations  in  specific  examples,  trying  to
exploit  it  manually  in  novel  problems  requires  considerable
effort.  This work describes an algorithm and a tool which use
fama architecture cells as building blocks and combine them to
perform complex computations.  The tool takes a mathematical
expression string as input and generates a VHDL description of
the circuit evaluating this expression.

I.  INTRODUCTION

Reconfigurable  architectures  have  proven  successful  in
modern applications both in terms of performance as well as
cost  or  power  consumption  [1].  Recently  a  reconfigurable
architecture was proposed, designed to enable the execution of
combinations of arithmetic operations in an efficient manner in
terms of time and space [2]. This effort is particularly relevant
in  the  domain  of  digital  signal  processing  in  which
optimization of mathematical computations is a decisive factor
in determining system performance, since heavy computation
modules with light-weight control structures are involved.

The proposed architecture presents a compromise between
two different paradigms [3]. On the one hand, special purpose
designs  result  in  efficient  implementations,  but  require
considerable amounts of skilled work and time. On the other
hand,  general  purpose  hardware  components  are  flexible
providing  solutions  that  are  fast  and  straightforward  to
implement  but  are  not  optimized  to  meet  the   needs  of  a
specific  application.  The  approach  described  here  utilizes
reconfigurable  circuits that  have been carefully  optimized to
efficiently calculate a set of arithmetic expressions, while being
flexible  enough  to  be  combined  together  into  circuits
performing arbitrary, complex operations.

Increased performance of this methodology in the domain
of DSP has been demonstrated in real  system examples  [4].
However, widespread adoption of this scheme is contingent on
the development of appropriate tools, which would automate
design, relieving developers  from devoting unnecessary time

and effort. To this end, this work describes a tool1 which was
developed  to  generate  optimized  VHDL  code,  simply  by
specifying  a  mathematical  expression  using  a  high-level
description.  Such  an  expression  may  exhibit  arbitrary
complexity  with  respect  to  the  number  and  grouping  of
operations. 

This paper is organized as follows: In the next section the
fama cell which is the building block out of which the total
circuit is built is described. In section 3 the processing steps are
outlined  and  explained.  Section  4  presents  the  results  of
measurements for each stage of processing, while in the last
section some possible directions for future work are presented. 

II. DESCRIPTION OF FAMA CELL

Central  to  this  work  is  the  flexible
adder-multiplication-adder  cell  introduced  in  [2].  This  is  a
combinatorial circuit which is able to perform efficiently basic
arithmetic  operations  frequently  encountered  in  DSP
applications. Cells are configurable.  By setting configuration
signals appropriately, different datapaths within the cell may be
selected, resulting in different arithmetic manipulations of the
cell inputs.

Fama cells perform operations efficiently by exploiting the
Carry-Save representation [5-6]. Signals in this representation
are comprised of two separate parts, the “carry” and the “save”
part. Both of these are encoded in standard two-complement
binary format, while the overall value of such a signal is the
sum of these parts. The fact that there are two different parts
for each signal is exploited in the implementation of the adders
used.  Specifically,  summation  proceeds  without  carry
propagation  delay,  since  carries  can  be  saved  as  a  separate
signal  to  be added to the result  at  a  later  stage.   Fama cell
operations support calculations in Carry-Save format without
the need for conversion to standard form and produce a result
that is also in the Carry-Save format. Thus, individual cells can
be  connected  into  a  network  of  cells  performing  more
complicated calculations.  In many cases,  a standard adder is
necessary only as the last step of the computation in order to
produce the final result in standard binary form.

1 The tool is available available upon request for any research team 
interested in working with FAMA cells
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There are four inputs and one output in each cell. Inputs
X*, Y* and K* are in Carry-Save form while,  input A is in
two-complement  binary form.  This  signal  is  one of  the two
inputs fed to the multiplier. The output Z* is also in carry-save
format.

As the name suggests individual fama cells comprise three
sequential  operation  circuits:  An  adder,  feeding  a  multiplier
which  is  in  turn  fed  into  a  second  adder.  Adders  are
implemented  using the  4:2 C-S design,  while  the  multiplier
uses  a  modified  Booth  scheme  [7].  Both  adders  can  be
configured to perform subtractions by setting the appropriate
configuration signal which selects the inverted input to be fed
to  the  adder.  In  addition,  there  are  two  more  configuration
signals  which  serve  as  select  signals  into  two  2-to-1
multiplexers which determine datapath within the cell.  Thus,
based on the configuration signals, different operations can be
performed.  These  include  the  operations  listed  below.  More
simple operations such as addition of two C-S inputs can also
be performed by using appropriate fixed values for some of the
signals (e.g. setting them to 0).

A (X* ± Y*) ± K*

(X* ± Y*) ± A K*

(X*± Y*) ± K*

A (X* ± Y*)

A K*

III. DESCRIPTION OF OUR ALGORITHM

This paper describes a tool which which takes as input a
string  containing  a  mathematical  expression  and  generates
VHDL code  that  executes  this  expression.  The  input  must
conform  to  the  usual  conventions  adopted  by  common
programming languages like C, C++ or Java. It may contain
additions,  subtractions,  multiplications  and  combinations  of
these.  Multiplications  take  precedence  over  additions  and
subtractions,  while  it  is  possible  to  define  grouping  of
operations by parentheses, which may be used and nested at
any level. It is also possible to define string variable names as
inputs. Again, standard C conventions are adopted.

The overall process can be divided in two stages. First the
input string is processed to generate a graph in memory whose
nodes  are  either  input  nodes  or  fama  cells  configured  and
connected  appropriately.  Second  a  netlist  of  components  is
compiled based on this graph as a JSON file which serves as
input to the VHDL generation module synthesizing the final
code.

The  first  stage  follows  the  steps  depicted  in  figure  1.
Parsing is performed in a  multi-pass  fashion with each  step
performing a different function. The first step is the conversion
of the input string into a standard data flow graph which is
comprised by two different  types of nodes,  input nodes and
operation  nodes.  Operation  nodes  types  include  addition,
subtraction and multiplication nodes. Each of these accepts two
inputs and produces one output, the result of the corresponding
operation. 

Fig. 1.Basic stages in generating final graph.

Next, this initial graph is processed in a bottom-up manner,
identifying multiplication nodes and replacing them by fama
cells. During these substitutions, multiplication nodes are first
grouped  with  neighboring  nodes  resulting  in  a  network  of
nodes  that  can  be  directly  mapped  to  one  of  the  fama  cell
operations  listed  above.  This  is  done  with  the  goal  of
maximizing  the  number  of  nodes  replaced.  The  new  fama
nodes created are then wired into the graph, while old nodes
are discarded.

Since there is only one multiplier in every cell, the number
of  cells  used  cannot  be  less  than  the  total  number  of
multiplications in the given input. If the input string does not
contain long chains of additions or subtractions it is possible
for all addition and subtraction nodes to be grouped together
with multiplication nodes and to be removed from the graph. In
this case no processing is necessary. However, if this is not the
case  and  addition/subtraction  nodes  still  exist,  a  second
bottom-up  pass  is  performed  in  order  to  incorporate  these
nodes into cells.

The restriction imposed by the fact that one of the inputs to
the multiplier is not in C-S format needs to be addressed. Since
cell  outputs are in C-S format,  an output cannot  be directly
connected to the A input of a second cell.  As a result, when it
is necessary to multiply two different cell outputs, one of them
needs to be converted to standard form by summing the Carry
and the  Save parts.  An alternative  is  to  use  the  distributive
property of multiplication and use different multipliers for the
C and S part of the overall  signal. Since addition introduces
considerable delay, this issue is basically a trade-off between
the number of cells and the latency of the circuit.
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A second restriction emerges because of the asymmetry of
the fama cell with respect to the multiplier when it is fed to the
final  addition/subtraction unit.  As inversion of the multiplier
output  contributes  to  the  maximum combinatorial  delay,  no
inverter is included in the design. This, however,  means that
this signal may serve as the minuend and not the subtrahend of
the final subtraction. Thus, in certain cases it is only possible to
compute the inverse of the desired expression in a single step.
In many times this negative sign can be absorbed in subsequent
cells by changing additions to subtractions and/or reversing the
order  of inputs in downstream cells.  In the remaining cases,
inverters are used.

Upon completion of  the  analysis  of  the input  string and
generation  of  a  network  of  components,  this  network  is
encoded into a text file in JSON format which contains a netlist
of components used. This is then used to generate the VHDL
description of the circuit.  In  this description the bitwidth of
signals  is  parametrized.  A graphic  representation  of  inputs,
components  and  the  connections  between  them  is  also
generated  which  provides  a  more  accessible,  visual
representation of the graph.

The  VHDL  code  generated  contains  a  pipelined
implementation  of  the  design.  The  basic  time  scale  in  the
circuit is determined by the combinatorial delay of a fama cell.
When  other  components  are  used  (for  example  adders  that
convert a signal from Carry-Save to binary format or inverters)
delay  flip-flops  are  added  based  on  the  delay  of  these
components and the difference with the delay of a fama cell.

IV. ALGORITHM COMPLEXITY AND PERFORMANCE

To  measure  performance  of  the  algorithm,  time
measurements  were  taken  for  inputs  that  contain  varying
number of terms. Input strings of different sizes were generated
randomly. Additions and multiplications were generated with
equal  probabilities.  Additionally,  parentheses  were  included.
Opening parenthesis were added with a probability of 0.2 in all
appropriate  positions,  while  positions  of  the  corresponding
closing parentheses were also selected at random.

Fig. 2.Execution time for different sizes of input

Figure  2  shows  the  results  of  time  measurements  with
respect to input string size. It is clear that the dependence of
execution time on input size is linear.  This is  not  surprising
since both DFG generation and graph processing steps process
one term or one node at a time, while it is also true that the
number of cells in the final design is expected to be linear with
input size. 

Figure  3  presents  a  more  detailed  view  of  the  different
stages of the algorithm. Specifically, it shows how the overall
processing time is allocated to the first six basic steps of the
algorithm. As can be seen from the figure, processing of the
input  string  and generation  of  the  DFG, requires  substantial
computational  power  (about  45%  of  the  total  computation
time). The final stage of creating a pipelined design through the
addition of DFFs also requires considerable time (about 15%).

With respect to the main computation, which involves the
consecutive steps of consolidating first all multiplication nodes
and  then  consolidating  the  remaining  addition/subtraction
nodes,  the  fraction  of  time  required  is  about  40%.  It  is
interesting  to  note  that  most  of  this  time is  devoted  for  the
multiplication-parsing step. This is a reflection of the statement
made earlier that in many cases additions/subtractions can be
merged with neighboring multiplication nodes, leaving few or
no  addition/subtraction  nodes  to  be  parsed  in  a  subsequent
pass. This is expected to hold in all cases where no long chains
of consecutive addition/subtraction nodes exist.

Fig. 3.  Individual time requirements for different stages of the algorithm

V. FUTURE WORK

One of the important features of the components described
is  that  they  are  reconfigurable.  This  not  only  permits  their
combination in different ways to produce complex networks, it
also opens up the possibility of reuse. Thus, when area or other
constraints  limit  the  maximum number  of  cells  that  can  be
used, complex calculations can still be performed by creating
the  necessary  connections  between  cells  and  providing
time-dependent data and control signals. Two types of control
signals are necessary. The first of these would determine the
dataflow  within  the  overall  circuit,  selecting  connections
between outputs and inputs. The second class would operate on
a finer grain level configuring individual cells. We are working
on this problem and studying ways to deal with dependencies,
ensure  intermediate  result  persistence  when  needed  and
optimize hardware design.

At  the  same  time,  we  would  like  to  extrapolate  our
methodology to a higher level of abstraction. Specifically we
would like to design a tool for which the gamut of available
cell operations is parametrized.  In this setting, the user would
determine  what  kind  of  operations  a  cell  is  capable  of
completing, as well as the precedence of each operation. For
each operation the original DFG created would then be scanned
for parts that can be mapped directly to the given operation.
This  would  be  a  valuable  tool  facilitating  widespread
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application  both  of  existing  architectures  as  well  as
architectures which are likely to be proposed in the future.
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