
Efficient Implementation of Arithmetic Calculation
Circuits

Lazaros Batsilas
Department of Informatics and

Telecommunications Engineering,
University of Western Macedonia,

Kozani 50100, Greece
st0181@icte.uowm.gr

Minas Dasygenis
Department of Informatics and

Telecommunications Engineering,
University of Western Macedonia,

Kozani 50100, Greece
mdasyg@ieee.org

Abstract—In recent years considerable attention has been
devoted in the development of reconfigurable architectures for
different classes of problems. One specific example is the fama
(flexible-adder-multiplier-adder) cell which was proposed to
provide efficient arithmetic computation in DSP applications.
Although this architecture has been shown to outperform
alternative implementations in specific examples, trying to
exploit it manually in novel problems requires considerable
effort. This work describes an algorithm and a tool which use
fama architecture cells as building blocks and combine them to
perform complex computations. The tool takes a mathematical
expression string as input and generates a VHDL description of
the circuit evaluating this expression.

I. INTRODUCTION

Reconfigurable architectures have proven successful in
modern applications both in terms of performance as well as
cost or power consumption [1]. Recently a reconfigurable
architecture was proposed, designed to enable the execution of
combinations of arithmetic operations in an efficient manner in
terms of time and space [2]. This effort is particularly relevant
in the domain of digital signal processing in which
optimization of mathematical computations is a decisive factor
in determining system performance, since heavy computation
modules with light-weight control structures are involved.

The proposed architecture presents a compromise between
two different paradigms [3]. On the one hand, special purpose
designs result in efficient implementations, but require
considerable amounts of skilled work and time. On the other
hand, general purpose hardware components are flexible
providing solutions that are fast and straightforward to
implement but are not optimized to meet the needs of a
specific application. The approach described here utilizes
reconfigurable circuits that have been carefully optimized to
efficiently calculate a set of arithmetic expressions, while being
flexible enough to be combined together into circuits
performing arbitrary, complex operations.

Increased performance of this methodology in the domain
of DSP has been demonstrated in real system examples [4].
However, widespread adoption of this scheme is contingent on
the development of appropriate tools, which would automate
design, relieving developers from devoting unnecessary time

and effort. To this end, this work describes a tool1 which was
developed to generate optimized VHDL code, simply by
specifying a mathematical expression using a high-level
description. Such an expression may exhibit arbitrary
complexity with respect to the number and grouping of
operations.

This paper is organized as follows: In the next section the
fama cell which is the building block out of which the total
circuit is built is described. In section 3 the processing steps are
outlined and explained. Section 4 presents the results of
measurements for each stage of processing, while in the last
section some possible directions for future work are presented.

II. DESCRIPTION OF FAMA CELL

Central to this work is the flexible
adder-multiplication-adder cell introduced in [2]. This is a
combinatorial circuit which is able to perform efficiently basic
arithmetic operations frequently encountered in DSP
applications. Cells are configurable. By setting configuration
signals appropriately, different datapaths within the cell may be
selected, resulting in different arithmetic manipulations of the
cell inputs.

Fama cells perform operations efficiently by exploiting the
Carry-Save representation [5-6]. Signals in this representation
are comprised of two separate parts, the “carry” and the “save”
part. Both of these are encoded in standard two-complement
binary format, while the overall value of such a signal is the
sum of these parts. The fact that there are two different parts
for each signal is exploited in the implementation of the adders
used. Specifically, summation proceeds without carry
propagation delay, since carries can be saved as a separate
signal to be added to the result at a later stage. Fama cell
operations support calculations in Carry-Save format without
the need for conversion to standard form and produce a result
that is also in the Carry-Save format. Thus, individual cells can
be connected into a network of cells performing more
complicated calculations. In many cases, a standard adder is
necessary only as the last step of the computation in order to
produce the final result in standard binary form.

1 The tool is available available upon request for any research team
interested in working with FAMA cells

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

There are four inputs and one output in each cell. Inputs
X*, Y* and K* are in Carry-Save form while, input A is in
two-complement binary form. This signal is one of the two
inputs fed to the multiplier. The output Z* is also in carry-save
format.

As the name suggests individual fama cells comprise three
sequential operation circuits: An adder, feeding a multiplier
which is in turn fed into a second adder. Adders are
implemented using the 4:2 C-S design, while the multiplier
uses a modified Booth scheme [7]. Both adders can be
configured to perform subtractions by setting the appropriate
configuration signal which selects the inverted input to be fed
to the adder. In addition, there are two more configuration
signals which serve as select signals into two 2-to-1
multiplexers which determine datapath within the cell. Thus,
based on the configuration signals, different operations can be
performed. These include the operations listed below. More
simple operations such as addition of two C-S inputs can also
be performed by using appropriate fixed values for some of the
signals (e.g. setting them to 0).

A (X* ± Y*) ± K*

(X* ± Y*) ± A K*

(X*± Y*) ± K*

A (X* ± Y*)

A K*

III. DESCRIPTION OF OUR ALGORITHM

This paper describes a tool which which takes as input a
string containing a mathematical expression and generates
VHDL code that executes this expression. The input must
conform to the usual conventions adopted by common
programming languages like C, C++ or Java. It may contain
additions, subtractions, multiplications and combinations of
these. Multiplications take precedence over additions and
subtractions, while it is possible to define grouping of
operations by parentheses, which may be used and nested at
any level. It is also possible to define string variable names as
inputs. Again, standard C conventions are adopted.

The overall process can be divided in two stages. First the
input string is processed to generate a graph in memory whose
nodes are either input nodes or fama cells configured and
connected appropriately. Second a netlist of components is
compiled based on this graph as a JSON file which serves as
input to the VHDL generation module synthesizing the final
code.

The first stage follows the steps depicted in figure 1.
Parsing is performed in a multi-pass fashion with each step
performing a different function. The first step is the conversion
of the input string into a standard data flow graph which is
comprised by two different types of nodes, input nodes and
operation nodes. Operation nodes types include addition,
subtraction and multiplication nodes. Each of these accepts two
inputs and produces one output, the result of the corresponding
operation.

Fig. 1.Basic stages in generating final graph.

Next, this initial graph is processed in a bottom-up manner,
identifying multiplication nodes and replacing them by fama
cells. During these substitutions, multiplication nodes are first
grouped with neighboring nodes resulting in a network of
nodes that can be directly mapped to one of the fama cell
operations listed above. This is done with the goal of
maximizing the number of nodes replaced. The new fama
nodes created are then wired into the graph, while old nodes
are discarded.

Since there is only one multiplier in every cell, the number
of cells used cannot be less than the total number of
multiplications in the given input. If the input string does not
contain long chains of additions or subtractions it is possible
for all addition and subtraction nodes to be grouped together
with multiplication nodes and to be removed from the graph. In
this case no processing is necessary. However, if this is not the
case and addition/subtraction nodes still exist, a second
bottom-up pass is performed in order to incorporate these
nodes into cells.

The restriction imposed by the fact that one of the inputs to
the multiplier is not in C-S format needs to be addressed. Since
cell outputs are in C-S format, an output cannot be directly
connected to the A input of a second cell. As a result, when it
is necessary to multiply two different cell outputs, one of them
needs to be converted to standard form by summing the Carry
and the Save parts. An alternative is to use the distributive
property of multiplication and use different multipliers for the
C and S part of the overall signal. Since addition introduces
considerable delay, this issue is basically a trade-off between
the number of cells and the latency of the circuit.

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

A second restriction emerges because of the asymmetry of
the fama cell with respect to the multiplier when it is fed to the
final addition/subtraction unit. As inversion of the multiplier
output contributes to the maximum combinatorial delay, no
inverter is included in the design. This, however, means that
this signal may serve as the minuend and not the subtrahend of
the final subtraction. Thus, in certain cases it is only possible to
compute the inverse of the desired expression in a single step.
In many times this negative sign can be absorbed in subsequent
cells by changing additions to subtractions and/or reversing the
order of inputs in downstream cells. In the remaining cases,
inverters are used.

Upon completion of the analysis of the input string and
generation of a network of components, this network is
encoded into a text file in JSON format which contains a netlist
of components used. This is then used to generate the VHDL
description of the circuit. In this description the bitwidth of
signals is parametrized. A graphic representation of inputs,
components and the connections between them is also
generated which provides a more accessible, visual
representation of the graph.

The VHDL code generated contains a pipelined
implementation of the design. The basic time scale in the
circuit is determined by the combinatorial delay of a fama cell.
When other components are used (for example adders that
convert a signal from Carry-Save to binary format or inverters)
delay flip-flops are added based on the delay of these
components and the difference with the delay of a fama cell.

IV. ALGORITHM COMPLEXITY AND PERFORMANCE

To measure performance of the algorithm, time
measurements were taken for inputs that contain varying
number of terms. Input strings of different sizes were generated
randomly. Additions and multiplications were generated with
equal probabilities. Additionally, parentheses were included.
Opening parenthesis were added with a probability of 0.2 in all
appropriate positions, while positions of the corresponding
closing parentheses were also selected at random.

Fig. 2.Execution time for different sizes of input

Figure 2 shows the results of time measurements with
respect to input string size. It is clear that the dependence of
execution time on input size is linear. This is not surprising
since both DFG generation and graph processing steps process
one term or one node at a time, while it is also true that the
number of cells in the final design is expected to be linear with
input size.

Figure 3 presents a more detailed view of the different
stages of the algorithm. Specifically, it shows how the overall
processing time is allocated to the first six basic steps of the
algorithm. As can be seen from the figure, processing of the
input string and generation of the DFG, requires substantial
computational power (about 45% of the total computation
time). The final stage of creating a pipelined design through the
addition of DFFs also requires considerable time (about 15%).

With respect to the main computation, which involves the
consecutive steps of consolidating first all multiplication nodes
and then consolidating the remaining addition/subtraction
nodes, the fraction of time required is about 40%. It is
interesting to note that most of this time is devoted for the
multiplication-parsing step. This is a reflection of the statement
made earlier that in many cases additions/subtractions can be
merged with neighboring multiplication nodes, leaving few or
no addition/subtraction nodes to be parsed in a subsequent
pass. This is expected to hold in all cases where no long chains
of consecutive addition/subtraction nodes exist.

Fig. 3. Individual time requirements for different stages of the algorithm

V. FUTURE WORK

One of the important features of the components described
is that they are reconfigurable. This not only permits their
combination in different ways to produce complex networks, it
also opens up the possibility of reuse. Thus, when area or other
constraints limit the maximum number of cells that can be
used, complex calculations can still be performed by creating
the necessary connections between cells and providing
time-dependent data and control signals. Two types of control
signals are necessary. The first of these would determine the
dataflow within the overall circuit, selecting connections
between outputs and inputs. The second class would operate on
a finer grain level configuring individual cells. We are working
on this problem and studying ways to deal with dependencies,
ensure intermediate result persistence when needed and
optimize hardware design.

At the same time, we would like to extrapolate our
methodology to a higher level of abstraction. Specifically we
would like to design a tool for which the gamut of available
cell operations is parametrized. In this setting, the user would
determine what kind of operations a cell is capable of
completing, as well as the precedence of each operation. For
each operation the original DFG created would then be scanned
for parts that can be mapped directly to the given operation.
This would be a valuable tool facilitating widespread

Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

application both of existing architectures as well as
architectures which are likely to be proposed in the future.

REFERENCES

[1] S. Stojanovic, D. Bojic, M. Bojovic, M. Valero and V. Milutinovic “An
overview of selected hybrid and reconfigurable architectures” in IEEE
International Conference on Industrial Technology (ICIT), pp. 444-449,
2012.

[2] M. Galanis, G. Theodoridis, S. Trgoudas and C. Goutis “A
high-performance datapath for synthesising DSP kernels. IEEE
Transactions on computer-aided design of integrated circuits and
systems, 25(6) pp. 1154-1163, 2006

[3] M. Wolf, In High Performance Embedded Computing, 3rd Ed., Elsevier
2014.

[4] S. Xydis, I. Triantafyllou, G. Economakos, K. Pekmestzi, “Flexible
datapath synthesis through arithmetically optimized operation chaining”
in NASA/ESA Conference on Adaptive Hardware and Systems
pp.407-414 .

[5] N. Weste and K. Eshraghian, “Principles of CMOS VLSI Design – A
Systems Perspective”. Reading, MA: Addison-Wesley, 1985.

[6] A. Verma, P. Ienne. “Improved use of the Carry-Save representation for
the synthesis of complex arithmetic circuits” in Proceedings of
IEEE/ACM ICCAD, pp. 791-798, 2004.

[7] P. E. Madrid, B. Millar and E. E. Swartzlander, Jr, “Modified Booth's
algorithm for high radix fixed point multiplication”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 1, No. 2 June
1993.

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

	I. Introduction
	II. Description Of fama Cell
	III. Description Of Our Algorithm
	IV. Algorithm Complexity and Performance
	V. Future work

