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Abstract— Optimal continuous transistor/device sizing has 

been a holy grail in the EDA community. However, efforts to this 

end have been hampered by the sheer size of the optimization 

problem (millions of variables and constraints), modeling issues 

especially in the timing domain. This research work proposes 

Continuous Cell Size Optimizer (CCSopt), a continuous gate-level 

sizing tool that finds the optimum cell shrinkage by setting as the 

objective the minimization of the circuit delay. Notice that because 

of only shrinking the cells the power consumption of the circuit is 

reduced as well. CCSopt comprises a hybrid heuristic approach 

and state-of-the-art algorithms for finding the optimal transistor 

sizes. In addition, CCSopt can exploit the computational power of 

parallel architectures in order to decrease execution time and 

enable analysis of very large-scale integrated circuits. 

Keywords— transistor sizing, power optimization, delay 

optimization, logical effort, incremental static timing analysis 

I.  INTRODUCTION 

The proposed activity is building on the learnings from both 

academic and industrial attempts to tackle a difficult yet 

attractive design problem. The approach taken is to perform 

continuous sizing optimization but in a constrained mode, in 

order to arrive at solutions that are reliably implemented in 

silicon, and easily integrated into mainstream design flows. 

Transistor sizing tools have been around since the publication 

on TILOS [1] [2]. Initially the sizing effort was focused on 

transistor sizes only, for which a number of approaches have 

been developed (posynomial sizing [3], logical [4] AMPS [6]). 

Further strains of the aforementioned basic approaches have 

been proposed initially for timing and area optimization, and, 

later for multi-objective cost functions involving mainly power 

[7] [8]. Most of the sizing tools are path based, meaning that 

they treat the transistors of gates along a path as an optimization 

sub-problem, which can cause serious conflicts especially in 

similarly timed reconvergent fanout paths. A major undertaking 

has been to observe design constraints while performing 

transistor sizing. Minimum and maximum slope constraints 

have been the most difficult to implement as they are not very 

compatible with any of the sizing methods that have been 

proposed thus far. Minimum and maximum transistor sizes, 

maximum delay constraints, and fixed relative transistor sizing 

are more straightforward to implement. Recent academic 

papers and patents incorporate interconnect capacitance and, in 

some cases resistance, to account for the delay in interconnect 

lines [9].  

 

The rest of this paper is organized as follows. In section II we 

present the software architecture. In section III we give 

background material on certain useful fragments of cell 

resizing. Section IV introduces an enchanted version of the 

Static Timing Analysis (STA) method. In section V we present 

the implementation steps of the CCSopt tool. Section VI 

presents experimental results on several benchmarks. Finally, 

section VII provides ideas for future work. 

II. SOFTWARE ARCHITECTURE 

CCSopt is a stand-alone tool, which was built on top of Unified 
Logical Effort (ULE) methodology which takes into account the 
interconnect resistance and capacitance, in order to achieve high 
convergence rate to the optimal cell sizes solution. The core of 
the tool (see Figure 1) consists of a fast STA engine which 
evaluates the design’s timing information throughout the 
execution of the algorithm. The inputs of the tool consists of the 
design’s external topology or cell connectivity information (.v 
file), the cell’s internal information such as internal connectivity 
and delay (.lib file), the parasitic information derived after 
placing and routing (.spef file), along with a set of instructions 
for the algorithm (.cfg file). The outputs of the tool consists of 
the transformed design (.v file) along with the new cells scale 
factors (.scf file).  
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Figure 1 - Software Architecture 
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III. UNIFIED LOGICAL EFFORT 

As VLSI circuits continue scaling, the contribution of wires to 

the delay is increased and thus it cannot be neglected. This 

characteristic occurs not only with respect to long wires 

connecting separate modules but also to the interconnect within 

logic modules where the delay introduced by the wires 

connecting closely coupled gates approaches or in some 

circumstances exceeds the gate delay. Logical effort 

optimization for gates without wires is based on equal stage 

efforts: 

 

𝒈𝒊

𝑪𝒊+𝟏
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=  𝒈𝒊+𝟏

𝑪𝒊+𝟐

𝑪𝒊+𝟏

 
 
(1) 

 

, where 𝑔𝑖 and 𝐶𝑖 are, the logical effort and the input capacitance 

of the cell 𝑖, respectively. The useful Logical Effort (LE) rule 

that the path delay is minimum when the effort of each stage is 

equal breaks down, because interconnect has fixed capacitances 

which do not correlate with the characteristics of the gates. This 

drawback of LE methodology is described by its authors as 

“one of the most dissatisfying limitations of logical effort”. 

 

A. Delay Model of Logic Gates with Wires in Paths with 

Branches 

The logical effort model is modified to include the interconnect 

delay [3]. This change is achieved by extending the gate logical 

effort delay by the wire delay, establishing a Unified Logical 

Effort model. Thanks to the Elmore [12] delay model the delay 

of a circuit comprising logic gates and wires (see Figure 2) can 

be easily calculated.  

 

The circuit in Figure 2 shows the general structure containing a 

side branch with RC interconnect and/or a fanout load with 

arbitrary capacitance where 𝑅𝑏 and 𝐶𝑏  are the resistance and 

capacitance of branch wires, respectively, and 𝐶𝑓 is the fanout 

load capacitance. The ULE optimum expression can be 

generalized for any combination of side branch wires and 

fanout gates by determining the total effective capacitance of 

the fanout branches for each stage of the path: 

 

𝑪𝑩𝑭 = ∑ 𝑪𝒃𝒏
+ ∑ 𝑪𝒇𝒎

𝒎

𝟏

𝒏
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, where 𝑛 and 𝑚 are the number of branch wires and fanout 

gates in a path, respectively. Taking into consideration the last 

equation, the general ULE optimum expression for the input 

capacitance is determined [11]: 
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B. Relaxation Method 

In order to simplify the solution, a relaxation method is 

proposed in [11]. The technique is based on an iterative 

calculation along the path while applying the optimum 

conditions. Each capacitance along the path is iteratively 

replaced by the capacitance determined from applying the 

optimum expressions, shown in equation 3, to two neighboring 

logic gates. The technique consists of the following steps: 

 

a) (Iteration) Replace each capacitance by the value determined 

from applying the optimum expressions on two neighboring 

logic gates. 

b) (Stop check) If any of the new values differ by more than a 

given precision from the previous value, reiterate step a else 

stop. 
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Figure 2 A logic path segment including RC interconnect and two 

branches 

 

C. Logical Effort Parameter Extraction 

There are multiple methods for extracting the logical effort 

parameter. A good standard cell library (.lib file) contains 

multiple sizes of each common gate. The sizes are typically 

labeled with their drive strength [15]. For example, a unit 

inverter may be called inv_x1. An inverter of eight times unit 

size is called inv_x8. It is often more intuitive to characterize 

gates by their drive strength, x, rather than their input 

capacitance. If we redefine a unit inverter to have one unit of 

input capacitance, the logical effort can be extracted by: 

 

𝒈 =  

𝑪𝒊𝒏

𝑪𝒐

𝒙
 

 

(4) 

 

In particular, since every input pin has different capacitance, 

according to its state (falling, rising), there will exist two logical 

effort: 𝑔 values for every input pin (gfall, grise). 

IV. ENHANCED STATIC TIMING ANALYSIS 

The resizing algorithm performs the ULE method for delay 

evaluation and minimization in paths composed of CMOS logic 

gates. Each path, that will be evaluated, can be chosen 

arbitrarily from a pool of paths, but this technique would not 

yield the best results. A choosing criterion must be used in order 
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to select the most suitable path every time. The proposed 

algorithm uses the delay as the classification criterion when 

examining paths.  

Timing analysis must be performed in order to sort the available 

paths according to their delay in descending order (late timing 

analysis). The delay models that have been used for cells and 

interconnect are NLDM and Elmore, respectively.     

 

A. Multi-threaded STA 

The implemented algorithm for STA has two embarrassingly 

parallel regions, that do not share any data, and there is not any 

need for a locking scheme to be developed. The first region 

corresponds to the evaluation of wire delay, because every net 

is completely independent from each other. The computation 

that is required to be performed in this region, requires path 

tracing to be involved in the interconnect graph, in case of paths 

with loops, where Elmore delay model cannot be applied, the 

maximum spanning tree algorithm is deployed to alleviate the 

problem. The second region corresponds the parallel 

calculation and propagation of the timing information, 

concerning the cells that are in the same level, because these 

cells do not share any common points in the graph of the circuit. 

This region of STA is the main hotspot of the resizing 

algorithm, since the timings of the design need to be revaluated 

over and over again. Note that in very large designs, the STA 

algorithm has to be performed thousands of times. 

 

B. Incremental STA 

STA is required to be performed every time a set of changes has 

happened in the design, which is the resizing of some cells 

within a path. An initial STA propagates the timing information 

in the design, starting from its primary inputs. Also a STA from 

the PIs has to be performed whenever a cell changes to update 

the timing information in the design Although this approach is 

sensible in terms of algorithm's correctness, it does not take into 

account that some portion of the design will stay unchanged, in 

terms of timing information, even if a change has taken place. 

A better approach would be to first find points that will be 

affected by the change, and then deploy the STA from those 

points. An enhancement to that approach can be achieved by 

knowing beforehand all the nodes, in which the arrival times 

will be required, for the critical path extraction, further reducing 

the arrival time propagation space. 

 

V. GATE LEVEL RESIZING ALGORITHM 

 The core of the resizing engine is the ULE method, which 

discovers the optimal cell input capacitances for a given path, 

and therefore the optimal cell sizes. The method, as mentioned 

before, takes into account branches and wire load 

(Resistances/Capacitances), along with the slope at every pin in 

the path (Rise/Fall). The path is evaluated, traversing it in 

backwards order, for a number of iterations until the values of 

all the input capacitances have not changed, in comparison to a 

predefined error threshold, from those in the previous iteration. 

       

The ULE method, evaluates a given path, which was not re-

examined before by the resizing algorithm. In order to filter the 

paths into examined (Partially) or not, a sub-path extraction 

algorithm was implemented. This algorithm receives as input 

the critical path from the STA. The path is then tokenized into 

smaller, not examined segments of the path, if any, and each 

sub path is then processed by the ULE method. In the case of 

disallowing upsizing, the ULE method fails to process the given 

path, which will lead to even further preprocessing of the path. 

     

Aiming to examine as many as possible cells for resizing we list 

systematically all possible terminal nodes existing in the circuit 

graph by keeping a set of them. The set is initialized with the 

Primary outputs (POs) of the circuit and it is updated with new 

terminal nodes, the pins of a cell we have already examined. 

The algorithm finishes when there are no terminal nodes in the 

set. The ULE method populates a list of changed  
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Figure 3 CCSopt algorithm overview 

 

cells, along with the affected nets. The cells are defined as 

changed, only if they have been replaced by a newer downsized. 

The ULE, often does not result to the replacement of any cell in 

the path and as a result the resizing algorithm falls into a dead- 

end. However, the algorithm must continue the examination of 

the rest of the circuit, by finding the next in line critical path. 

 

Since no cell was changed during the last path examination, 

there is no need to apply a STA. The problem that arises, 

concerns the critical path extraction which results in the same 

path as before. In order to alleviate that problem, the terminal 

node that produced the dead-end has to be removed from the 

set.  

VI. EVALUATION 

In this section, a number of benchmarks is presented, indicating 

the number of the resized cells, using the proposed resizing 
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algorithm. The suite of benchmarks has been take from TAU 

2015 timing contest and ISPD contest. To the best of our 

knowledge it is the first time a continuous cell sizing tool is 

presented and as a result there are no results to be compared 

with the provided ones. 

 

Table 1 Benchmarks 

Benchmark # Cells # PI # PO 
#Resized 

Cells 

Execution 

Time (s) 

ac97_ctrl 14341 84 48 3603 15.545 

aes_core 22938 260 129 2965 29.054 

des_perf 105371 235 64 16665 161.352 

mem_ctrl 10531 115 152 2186 13.710 

pci_bridge32 19057 162 207 4234 25.073 

systemcaes 6484 260 129 1236 9.055 

systemcdes 3441 132 65 469 3.776 

tv80 5285 14 32 773 6.492 

usb_funct 15743 128 121 3593 18.424 

wb_dma 4195 217 215 891 5.052 

vga_lcd 139529 80 109 34146 290.549 

cordic_ispd 45359 34 64 20118 52.970 

des_perf_ispd 138878 234 140 83548 198.536 

edit_dist_ispd 147650 2562 12 88152 251.985 

fft_ispd 38158 1026 1984 13824 45.411 

matrix_mult_ispd 164040 3202 1600 68545 261.750 

pci_bridge32_isp

d 
40790 160 201 21701 44.429 

usb_phy_ispd 923 15 19 551 1.044 

netcard_iccad 1496719 1836 10 369598 17942.690 

 

VII. CONCLUSIONS & FUTURE WORK 

We have presented a continuous gate-level resizing tool that 

takes into consideration the interconnect capacitance and 

resistance. It also takes into account reconvergent fan-outs and 

arrives at a stable solution in all cases without the possibility of 

divergence. Moreover, the evaluation results guarantee high 

accuracy within acceptable timeframe.  

 

A number of possible extensions and changes should be 

revisited, that will allow CCSopt to have better quality and 

performance. Some of those extensions refer to a) reducing the 

number of cells that do not get resized, such as the first cells of 

the off-path branches, b) using a better criterion, in addition to 

only allowing down-sizing, to further reduce the power 

consumption, c) changing the delay calculation method, to use 

the CCS model as described in the lib file, to better approximate 

the delays of a cell, since the NLDM is not so accurate in the 

sub-nanometer regime, and d) altering the incremental STA, in 

order to only propagate the slews and arrival times through cells 

that lead to active terminal nodes, which will improve the 

overall performance. 
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