
CCSOpt: A Continuous Gate-Level Resizing Tool

Dimos Ntioudis†,*, Christos Kalonakis*, Panagiotis Giannakou†,*, Charalampos Antoniadis†,*, Georgios Stamoulis*,

Panagiota Tsompanopoulou†,*, Nestor Evmorfopoulos*, John Moondanos†,*, Georgios Dimiriu†,*
*Department of Electrical and Computer Engineering

University of Thessaly
†Centre for Research and Technology / Institute for Research and Technology Thessaly

{ntioudis, hrkalona, panagian, haadonia, georges, yota, nestevmo, jmoondan, dimitriu}@inf.uth.gr

Abstract— Optimal continuous transistor/device sizing has

been a holy grail in the EDA community. However, efforts to this

end have been hampered by the sheer size of the optimization

problem (millions of variables and constraints), modeling issues

especially in the timing domain. This research work proposes

Continuous Cell Size Optimizer (CCSopt), a continuous gate-level

sizing tool that finds the optimum cell shrinkage by setting as the

objective the minimization of the circuit delay. Notice that because

of only shrinking the cells the power consumption of the circuit is

reduced as well. CCSopt comprises a hybrid heuristic approach

and state-of-the-art algorithms for finding the optimal transistor

sizes. In addition, CCSopt can exploit the computational power of

parallel architectures in order to decrease execution time and

enable analysis of very large-scale integrated circuits.

Keywords— transistor sizing, power optimization, delay

optimization, logical effort, incremental static timing analysis

I. INTRODUCTION

The proposed activity is building on the learnings from both

academic and industrial attempts to tackle a difficult yet

attractive design problem. The approach taken is to perform

continuous sizing optimization but in a constrained mode, in

order to arrive at solutions that are reliably implemented in

silicon, and easily integrated into mainstream design flows.

Transistor sizing tools have been around since the publication

on TILOS [1] [2]. Initially the sizing effort was focused on

transistor sizes only, for which a number of approaches have

been developed (posynomial sizing [3], logical [4] AMPS [6]).

Further strains of the aforementioned basic approaches have

been proposed initially for timing and area optimization, and,

later for multi-objective cost functions involving mainly power

[7] [8]. Most of the sizing tools are path based, meaning that

they treat the transistors of gates along a path as an optimization

sub-problem, which can cause serious conflicts especially in

similarly timed reconvergent fanout paths. A major undertaking

has been to observe design constraints while performing

transistor sizing. Minimum and maximum slope constraints

have been the most difficult to implement as they are not very

compatible with any of the sizing methods that have been

proposed thus far. Minimum and maximum transistor sizes,

maximum delay constraints, and fixed relative transistor sizing

are more straightforward to implement. Recent academic

papers and patents incorporate interconnect capacitance and, in

some cases resistance, to account for the delay in interconnect

lines [9].

The rest of this paper is organized as follows. In section II we

present the software architecture. In section III we give

background material on certain useful fragments of cell

resizing. Section IV introduces an enchanted version of the

Static Timing Analysis (STA) method. In section V we present

the implementation steps of the CCSopt tool. Section VI

presents experimental results on several benchmarks. Finally,

section VII provides ideas for future work.

II. SOFTWARE ARCHITECTURE

CCSopt is a stand-alone tool, which was built on top of Unified
Logical Effort (ULE) methodology which takes into account the
interconnect resistance and capacitance, in order to achieve high
convergence rate to the optimal cell sizes solution. The core of
the tool (see Figure 1) consists of a fast STA engine which
evaluates the design’s timing information throughout the
execution of the algorithm. The inputs of the tool consists of the
design’s external topology or cell connectivity information (.v
file), the cell’s internal information such as internal connectivity
and delay (.lib file), the parasitic information derived after
placing and routing (.spef file), along with a set of instructions
for the algorithm (.cfg file). The outputs of the tool consists of
the transformed design (.v file) along with the new cells scale
factors (.scf file).

.v File.lib File .cfg File

Liberty parser
Gate-Level

Netlist parser

ULE Timing
Analysis

cell delay arcs
circuit topology

graph

Constraints &
other directivesLogical Effort

Extraction

logical effort: g

.spef
File

.spef parser

wire R/C –
parasitic data

new .v file .scf file

.cfg parser

Figure 1 - Software Architecture

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

III. UNIFIED LOGICAL EFFORT

As VLSI circuits continue scaling, the contribution of wires to

the delay is increased and thus it cannot be neglected. This

characteristic occurs not only with respect to long wires

connecting separate modules but also to the interconnect within

logic modules where the delay introduced by the wires

connecting closely coupled gates approaches or in some

circumstances exceeds the gate delay. Logical effort

optimization for gates without wires is based on equal stage

efforts:

𝒈𝒊

𝑪𝒊+𝟏

𝑪𝒊

= 𝒈𝒊+𝟏

𝑪𝒊+𝟐

𝑪𝒊+𝟏

(1)

, where 𝑔𝑖 and 𝐶𝑖 are, the logical effort and the input capacitance

of the cell 𝑖, respectively. The useful Logical Effort (LE) rule

that the path delay is minimum when the effort of each stage is

equal breaks down, because interconnect has fixed capacitances

which do not correlate with the characteristics of the gates. This

drawback of LE methodology is described by its authors as

“one of the most dissatisfying limitations of logical effort”.

A. Delay Model of Logic Gates with Wires in Paths with

Branches

The logical effort model is modified to include the interconnect

delay [3]. This change is achieved by extending the gate logical

effort delay by the wire delay, establishing a Unified Logical

Effort model. Thanks to the Elmore [12] delay model the delay

of a circuit comprising logic gates and wires (see Figure 2) can

be easily calculated.

The circuit in Figure 2 shows the general structure containing a

side branch with RC interconnect and/or a fanout load with

arbitrary capacitance where 𝑅𝑏 and 𝐶𝑏 are the resistance and

capacitance of branch wires, respectively, and 𝐶𝑓 is the fanout

load capacitance. The ULE optimum expression can be

generalized for any combination of side branch wires and

fanout gates by determining the total effective capacitance of

the fanout branches for each stage of the path:

𝑪𝑩𝑭 = ∑ 𝑪𝒃𝒏
+ ∑ 𝑪𝒇𝒎

𝒎

𝟏

𝒏

𝟏

(2)

, where 𝑛 and 𝑚 are the number of branch wires and fanout

gates in a path, respectively. Taking into consideration the last

equation, the general ULE optimum expression for the input

capacitance is determined [11]:

𝑪𝒊 = √𝑪𝒊−𝟏 × 𝑪𝒊+𝟏 × √𝟏 +
𝑪𝒘𝒊

𝑪𝒊+𝟏
+

𝑪𝑩𝑭𝒊

𝑪𝒊+𝟏

×
√

𝒈𝒊

𝒈𝒊−𝟏 +
𝑹𝒘𝒊−𝟏

× 𝑪𝒊−𝟏

𝝉

(3)

B. Relaxation Method

In order to simplify the solution, a relaxation method is

proposed in [11]. The technique is based on an iterative

calculation along the path while applying the optimum

conditions. Each capacitance along the path is iteratively

replaced by the capacitance determined from applying the

optimum expressions, shown in equation 3, to two neighboring

logic gates. The technique consists of the following steps:

a) (Iteration) Replace each capacitance by the value determined

from applying the optimum expressions on two neighboring

logic gates.

b) (Stop check) If any of the new values differ by more than a

given precision from the previous value, reiterate step a else

stop.

gi gi+1

Ci Ci+1

wire wire
Rwi Rwi+1

Cwi/2 Cwi/2 Cwi+1/2 Cwi+1/2

branch wire

Rb2

Cb2/2 Cb2/2 Cf2

branch wire

Rb1

Cb1/2 Cb1/2 Cf1

Figure 2 A logic path segment including RC interconnect and two

branches

C. Logical Effort Parameter Extraction

There are multiple methods for extracting the logical effort

parameter. A good standard cell library (.lib file) contains

multiple sizes of each common gate. The sizes are typically

labeled with their drive strength [15]. For example, a unit

inverter may be called inv_x1. An inverter of eight times unit

size is called inv_x8. It is often more intuitive to characterize

gates by their drive strength, x, rather than their input

capacitance. If we redefine a unit inverter to have one unit of

input capacitance, the logical effort can be extracted by:

𝒈 =

𝑪𝒊𝒏

𝑪𝒐

𝒙

(4)

In particular, since every input pin has different capacitance,

according to its state (falling, rising), there will exist two logical

effort: 𝑔 values for every input pin (gfall, grise).

IV. ENHANCED STATIC TIMING ANALYSIS

The resizing algorithm performs the ULE method for delay

evaluation and minimization in paths composed of CMOS logic

gates. Each path, that will be evaluated, can be chosen

arbitrarily from a pool of paths, but this technique would not

yield the best results. A choosing criterion must be used in order

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

to select the most suitable path every time. The proposed

algorithm uses the delay as the classification criterion when

examining paths.

Timing analysis must be performed in order to sort the available

paths according to their delay in descending order (late timing

analysis). The delay models that have been used for cells and

interconnect are NLDM and Elmore, respectively.

A. Multi-threaded STA

The implemented algorithm for STA has two embarrassingly

parallel regions, that do not share any data, and there is not any

need for a locking scheme to be developed. The first region

corresponds to the evaluation of wire delay, because every net

is completely independent from each other. The computation

that is required to be performed in this region, requires path

tracing to be involved in the interconnect graph, in case of paths

with loops, where Elmore delay model cannot be applied, the

maximum spanning tree algorithm is deployed to alleviate the

problem. The second region corresponds the parallel

calculation and propagation of the timing information,

concerning the cells that are in the same level, because these

cells do not share any common points in the graph of the circuit.

This region of STA is the main hotspot of the resizing

algorithm, since the timings of the design need to be revaluated

over and over again. Note that in very large designs, the STA

algorithm has to be performed thousands of times.

B. Incremental STA

STA is required to be performed every time a set of changes has

happened in the design, which is the resizing of some cells

within a path. An initial STA propagates the timing information

in the design, starting from its primary inputs. Also a STA from

the PIs has to be performed whenever a cell changes to update

the timing information in the design Although this approach is

sensible in terms of algorithm's correctness, it does not take into

account that some portion of the design will stay unchanged, in

terms of timing information, even if a change has taken place.

A better approach would be to first find points that will be

affected by the change, and then deploy the STA from those

points. An enhancement to that approach can be achieved by

knowing beforehand all the nodes, in which the arrival times

will be required, for the critical path extraction, further reducing

the arrival time propagation space.

V. GATE LEVEL RESIZING ALGORITHM

 The core of the resizing engine is the ULE method, which

discovers the optimal cell input capacitances for a given path,

and therefore the optimal cell sizes. The method, as mentioned

before, takes into account branches and wire load

(Resistances/Capacitances), along with the slope at every pin in

the path (Rise/Fall). The path is evaluated, traversing it in

backwards order, for a number of iterations until the values of

all the input capacitances have not changed, in comparison to a

predefined error threshold, from those in the previous iteration.

The ULE method, evaluates a given path, which was not re-

examined before by the resizing algorithm. In order to filter the

paths into examined (Partially) or not, a sub-path extraction

algorithm was implemented. This algorithm receives as input

the critical path from the STA. The path is then tokenized into

smaller, not examined segments of the path, if any, and each

sub path is then processed by the ULE method. In the case of

disallowing upsizing, the ULE method fails to process the given

path, which will lead to even further preprocessing of the path.

Aiming to examine as many as possible cells for resizing we list

systematically all possible terminal nodes existing in the circuit

graph by keeping a set of them. The set is initialized with the

Primary outputs (POs) of the circuit and it is updated with new

terminal nodes, the pins of a cell we have already examined.

The algorithm finishes when there are no terminal nodes in the

set. The ULE method populates a list of changed

Start

Input Files
Parsers

Logical Effort
Extraction

Sequential
Cells

Elements

Levelization

Initial
Terminal

Nodes

STA

Critical Path
Extraction

Path
Preprocessing

ULE

Fail

Changed
Cells

Incremental
STA

Terminal
Nodes Update

More
Terminals

Output File
Handler

End

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

Figure 3 CCSopt algorithm overview

cells, along with the affected nets. The cells are defined as

changed, only if they have been replaced by a newer downsized.

The ULE, often does not result to the replacement of any cell in

the path and as a result the resizing algorithm falls into a dead-

end. However, the algorithm must continue the examination of

the rest of the circuit, by finding the next in line critical path.

Since no cell was changed during the last path examination,

there is no need to apply a STA. The problem that arises,

concerns the critical path extraction which results in the same

path as before. In order to alleviate that problem, the terminal

node that produced the dead-end has to be removed from the

set.

VI. EVALUATION

In this section, a number of benchmarks is presented, indicating

the number of the resized cells, using the proposed resizing

Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

algorithm. The suite of benchmarks has been take from TAU

2015 timing contest and ISPD contest. To the best of our

knowledge it is the first time a continuous cell sizing tool is

presented and as a result there are no results to be compared

with the provided ones.

Table 1 Benchmarks

Benchmark # Cells # PI # PO
#Resized

Cells

Execution

Time (s)

ac97_ctrl 14341 84 48 3603 15.545

aes_core 22938 260 129 2965 29.054

des_perf 105371 235 64 16665 161.352

mem_ctrl 10531 115 152 2186 13.710

pci_bridge32 19057 162 207 4234 25.073

systemcaes 6484 260 129 1236 9.055

systemcdes 3441 132 65 469 3.776

tv80 5285 14 32 773 6.492

usb_funct 15743 128 121 3593 18.424

wb_dma 4195 217 215 891 5.052

vga_lcd 139529 80 109 34146 290.549

cordic_ispd 45359 34 64 20118 52.970

des_perf_ispd 138878 234 140 83548 198.536

edit_dist_ispd 147650 2562 12 88152 251.985

fft_ispd 38158 1026 1984 13824 45.411

matrix_mult_ispd 164040 3202 1600 68545 261.750

pci_bridge32_isp

d
40790 160 201 21701 44.429

usb_phy_ispd 923 15 19 551 1.044

netcard_iccad 1496719 1836 10 369598 17942.690

VII. CONCLUSIONS & FUTURE WORK

We have presented a continuous gate-level resizing tool that

takes into consideration the interconnect capacitance and

resistance. It also takes into account reconvergent fan-outs and

arrives at a stable solution in all cases without the possibility of

divergence. Moreover, the evaluation results guarantee high

accuracy within acceptable timeframe.

A number of possible extensions and changes should be

revisited, that will allow CCSopt to have better quality and

performance. Some of those extensions refer to a) reducing the

number of cells that do not get resized, such as the first cells of

the off-path branches, b) using a better criterion, in addition to

only allowing down-sizing, to further reduce the power

consumption, c) changing the delay calculation method, to use

the CCS model as described in the lib file, to better approximate

the delays of a cell, since the NLDM is not so accurate in the

sub-nanometer regime, and d) altering the incremental STA, in

order to only propagate the slews and arrival times through cells

that lead to active terminal nodes, which will improve the

overall performance.

ACKNOWLEDGEMENTS

This work was supported by EU and the Greek State through

ESPA 2013-2017, Action SYNERGASIA 2011, Project Code:

11SYN 5 719

REFERENCES

[1] J. Fishburn and A. Dunlop, "TILOS: A posynomial programming
approach to transistor sizing," in Proceedings of the IEEE International
Conference on Computer-Aided Design, 1985.

[2] A. E. Dunlop, "Transistor Sizing for integrates Circuit". U.S. Patent
No.4827428.

[3] S. S. Sapatnekar, B. V. Rao, P. M. Vaidya and S. M. Kang, "An exact
Solution to the Transistor Sizing Problem for CMOS Circuits using
Convex Optimization," in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 1993.

[4] I. Sutherland, D. Harris and B. Sproull, Logical Effort - Designing
Fast CMOS Circuits, Morgan Kaufmann Publishers, 1999.

[5] L. Sutherland, "Determining transistor widths using the theory of
logical effort". U.S. Patent No.6629301.

[6] H. H. F. Jyu, "Minimization of circuit delay and power through
transistor sizing". U.S. Patent No.6209122.

[7] L. G. Jones, "Method and apparatus for designing an integrated
circuit". U.S. Patent No.5666288.

[8] R. F. Leimbach, "Method of optimizing signal timing delays and
power consumption in LSI circuits". U.S. Patent No.4698760.

[9] A. Morgenshtein, "Logic circuit delay optimization". U.S. Patent
No.12292931.

[10] F. R. Sproull and E. S. Ivan, "Logical Effort:designing for speed on
the back of an envelope," in IEEE Advanced Research in VLSI, 1991.

[11] A. Morgenshtein, E. Friedman, R. Ginosar and A. Kolodny, "Unified
logical effort - a method for delay evaluation and minimization in logic
paths with RC interconnect.," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

[12] C. W. Elmore, The trasient response of damped linear networks with
particular regard to wide band amplifiers, vol. 19, J. Appl. Phys., 1948,
pp. 55-63.

[13] TAU Workshop, "tauworkshop," 9 2 2015. [Online]. Available:
https://sites.google.com/site/taucontest2015/resources

[14] ISPD Contest,”ispd” 9 2 2015. [Online]. Available:
http://www.ispd.cc/contests/15/web/benchmark.html

[15] Neil H. E. Weste, David Money Harris, CMOS VLSI Design: A
Circuits and Systems Perspective 4th, 2010, USA.

http://www.ispd.cc/contests/15/web/benchmark.html
Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

